您的位置:首页 > 范文大全 > 公文范文公文范文
数学模型方面论文,菁选3篇【精选推荐】
2025-08-23人已围观
数学模型方面论文,菁选3篇【精选推荐】
数学模型方面的论文1 【摘要】 金融数学是以概率统计和泛函分析为基础,以随机分析和鞅理论为核心,主要研究风险资产的定价、避险和最优投资消费策略的选择。近二十几年来,金融数学不仅对金融工具的创新和下面是小编为大家整理的数学模型方面论文,菁选3篇【精选推荐】,供大家参考。
数学模型方面的论文1
【摘要】
金融数学是以概率统计和泛函分析为基础,以随机分析和鞅理论为核心,主要研究风险资产的定价、避险和最优投资消费策略的选择。近二十几年来,金融数学不仅对金融工具的创新和对金融市场的有效运作产生直接的影响,而且对公司的投资策略和对研究开发项目的评估以及在金融风险的管理中得到广泛的运用。
【关键词】
金融数学 模型
一、金融数学概念
金融理论的核心问题,就是研究在不确定的环境下,经济人在空间和时间上分配或配置金融资产的活动。这种金融行为涉及到金融资产的时间因素、不确定性因素即金融资产的价值和风险问题。处理这种复杂性常常需要引入复杂的数学工具。金融数学是指运用数学理论和方法,研究金融运行规律的一门学科。其核心问题是在不确定多期条件下的证券组合选择和资产定价理论。套利、最优和均衡是其中三个主要概念。证券组合理论、资本资产定价模型、套利定价理论、期权定价理论和资产结构理论在现代金融数学理论中占据重要地位。
二、金融数学中的模型
1、有效市场理论
市场的有效性这一概念起源于本世纪法国人Bachelier的研究。他首次运用布朗运动模型来导出期权公式是在1900年,市场有效性的起源也正是在那个时候。然而市场有效性与信息相联系,是近几十年来的工作。Fama指出价格完全反映了可以使用的信息时,这个市场才能被称为是有效的,但是市场是有套还是无套利,是高效还是低效,不是非此即彼的问题,而是程度问题。
有效市场假设一直是激烈争论的问题,学者们进行了无数次理论研究和实证考察,对有效的市场理论的逻辑基础提出疑义:一方面市场的有效性是投机和套利的产物,而投机和套利都是有成本的活动;另一方面,因为市场是有效的,所以投机和套利是得不到回报的,这些活动就会停止,但是一旦停止了投机和套利的活动,市场又怎么能继续有效呢?无疑,投机和套利活动使得价格更为有效。正是这一矛盾统一体的不断变化,才使市场呈现出统计上的周期性变化。
2、证券组合理论
金融学从定性分析到定量分析始于马科维茨的证券组合选择理论。马科维茨首先将概率理论与数学规划成功地结合在了一起,把组合投资中的股票价格作为随机变量,用其均值表示受益,方差表示风险。当收益不变、使风险最小的投资组合问题可归结为二次规划的最优解。通过数量分析得出的这种结论,迎合了投资者规避风险的需要。随着量化研究的不断深入,组合理论及其实际运用方法越来越完善,成为现代投资学中的交流工具。但马科维茨组合理论中的许多假设条件无法满足,使其在现实中失效。为了克服这一困难,后来发展了基于神经网络的证券优化算法。
3、资本资产定价模型(CAPM)
资本资产定价模型主要描述了当市场处于均衡状态下,如何决定资产的相关风险以及收益和风险的相互关系。在均衡的市场中,理性的投资者都会持有市场证券组合的比例。市场证券组合是包含对所有证券投资的证券组合,其中每一种证券的投资比例等于它的相对市场价值,一种证券的相对市场价值等于这种证券总的市场价值除以所有证券总和的市场价值。该模型首先给出了风险资产收益率与市场风险之间的线性关系。同时也给出了单个证券的收益与市场资产组合收益之间的数量关系。资本资产定价模型的理论精华是一种证券的预期收益,可以用这种资产风险测度β来测量,既建立了期望收益率与β之间的线性关系。这一关系给出了很好的的两个命题。第一,为潜在的投资提供了一种估计其收益率的方法。第二,也为我们不在市场上交易的资产同样作出合理的定价。比如估计一级市场股票发行价。
4、APT模型
资本资产定价模型刻画了在资本市场达到均衡时资本收益的决定机制,他基于众多的假设,而且其中一些假设并不符合现实,在检验CAPM时,一些经验结果与其不符,为此在1970年罗斯提出了一种新的资本资产均衡模型即套利定价模型。该模型认为风险是由多个因素产生的,不仅仅是一个市场因素,尤其是他对风险态度的假设比CAPM更为宽松,也更为接近现实。APT的核心是假设不存在套利机会,证券的预期收益与风险因素存在近似的线性关系。APT理论的贡献主要在于其对均衡状态的描述。但由于APT理论只是阐明了资产定价的结构,而没有说明是哪些具体的经济的或其它的因素影响预期收益,所以这一理论的检验和实际应用都受到了一定的限制。
5、期权定价模型
布莱克和斯科尔斯的期权定价模型的推导建立在没有交易成本、税收限制等6个假设基础上。该模型表明:期权的价格是期权商品市场价格、商品市场价格的波动、期权执行价格距到期日时间的长短以及安全利息率的函数。自从布莱克和斯科尔斯的论文发表以后,由默顿、考克斯、鲁宾斯坦等一些学者相继对这一理论进行了重要的推广并得到广泛的应用。期权定价模型可用来制定各种金融衍生产品的价格,是各种衍生产品估价的有效工具。期权定价模型为西方国家金融创新提供了有利的指导,是现代金融理论的主要内容之一。
6、资产结构理论
在现代金融理论中,公司的资产结构理论(也称为MM定理)与有效市场理论和资产组合理论几乎是在同一时期发展起来的具有同等重要地位的成果。MM定理的条件是非常苛刻的,正是因为这些假设抽象掉了大量的现实东西,从而揭示了企业金融决策中最本质的东西即企业经营者和投资者行为及其相互作用。该定理公开发表以后,一些经济学家又对这一定理采用不同的方法从不同的角度作了进一步证明。其中最著名的有Hamda用资本定价模型进行了再证明,还有Stiglize用一般均衡理论作了再证明,结论都与MM定理是相一致的。
三、结语
数学模型已经大量的应用在金融学中,极大的促进了金融理论的发展。金融数学模型都是在很多假设的条件下才能成立,这些假设有些与客观现实有一定差距甚至抵触,因而解决这类问题就不理想,范围也十分狭窄,需要在数学上改进和发展。世界各国金融背景和管理模式各异,需要大量建立符合自己国情的金融模型和分析方法。
参考文献:
[1]张友兰,周爱名。金融数学的研究与进展[J]。高等数学研究, 2004。
[2]夏云森。金融数学模型[J]。*管理科学,1998,(3)
数学模型方面的论文2
[摘要]
经济数学模型是现代经济学语言的表现形式,是研究经济学的重要工具。该文从数学模型的基本概念,经济数学模型的内涵、分类,建立和应用经济数学模型等方面进行简要论述。
[关键词]
经济学 数学 数学模型经济数学模型
目前,数学方法的应用几乎遍及了经济学的各个领域,极大地促进了经济学的繁荣和发展。数学模型分析已成为现代经济学研究的基本趋向。经济数学模型在研究许多特定的经济问题方面具有重要的、有时甚至是不可替代的作用。经济数学模型方法在经济学日益计量化、定量分析化的今天显得越来越重要。
一、数学模型的基本概念
数学模型是相对于一定的概念、系统或过程而存在的。它是用数学语言表达原型结构、特征即内在联系的模型。例如,用字母、数字或其他有特别含义的数学符号建立起来的等式、不等式、图表、图像以及框图等,都是数学结构,当它们表征一个特定原型时,就是数学模型。总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形、图表等来刻画客观事物的本质属性与其内在联系。其特点是:明晰的假定条件、严谨的论证、清楚的结论。运用数学模型可以研究变量之间的关系,探寻事物的变化规律,用可控变量得出必要的结论,从而概括出理论假说。
1. 对构建数学模型的要求
(1)有足够的精确度;
(2)简单实用;
(3)依据充分;
(4)尽量借鉴标准形式;
(5)具有可控性,易于操作。
2 .数学建模的过程
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用获取的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行分析。
(6)模型检验:将模型分析结果与实际情况进行比较,以此来验证模型的准确性、合理性和适用性
二、经济数学模型的内涵
当数学模型与经济研究问题有机地结合在一起时,经济建模也就产生了。所谓经济数学模型,就是把实际经济现象内部各因素之间的关系以及人们的实践经验,归结成一套反映数量关系的数学公式和一系列的具体算法,用来描述研究对象的运动规律。在经济领域的数*用首要的问题是适用性或实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。运用经济数学建模来分析经济问题,预测经济走向,提出经济对策已经是大势所趋。
经济数学模型是研究分析经济数量关系的重要工具。它是经济理论和经济现实的中间环节。它在经济理论的指导下对经济现实进行简化,但在主要的本质方面又近似地反映了经济现实,所以是经济现实的抽象。
经济数学模型能起明确思路、加工信息、验证理论、计算求解、分析和解决经济问题的作用。对量大面广、相互联系、错综复杂的经济数量关系进行分析研究,不能离开经济数学模型的帮助。
三、经济数学模型的建立
1.理论和资料的准备。经济数学模型的质量首先取决于对经济问题的理论研究状况。理论假设能否成立、是否正确,关系到模型的成败。合理的理论假设是模型赖以建立的前提。资料是否充分、可靠和准确,也直接影响经济数学模型的质量与功能。
2. 建立模型。模型要采取一定的数学形式来反映经济数量关系。任何经济模型都需要有两个基本的构成要素:变量及关系。变量,即经济变量,指所要考虑的相关经济因素。在经济模型中一般存在两类变量,外生变量与内生变量。关系,即指经济变量间的关系。模型就是通过一定的方式将一些变量联接成一个有机系统,从而可以通过这个系统实现不同变量间的彼此相互作用。选定一些经济变量,并建立变量间的关系,这个过程就是建立经济模型的过程。模型不能过于简化,以致不能把握经济现实,又不能过分复杂,以致难于加工处理和管理操作。一个模型抽象或现实到什么程度,取决于分析的需要、分析人员的能力,以及取得资料的可能性。
3. 求解或模拟试验。以适用的软件(计算程序)在具有一定功能的电子计算机上可以进行各种模拟试验,比较和选择不同的方案。
4. 分析说明和实际应用。在分析和应用模型时,把模型计算所得出的结论与模型外获得的信息相结合,作出必要的判断。评价模型优劣的标准应该是吻合度(它同被反映的经济数量关系的符合程度)与实用度(进行理论分析、经济预测、政策评价等应用效果)的统一。随着客观经济情况的变化,模型需要不断修改和更新。
经济数学模型是系统方法的具体运用,它的着眼点并不在于反映单个的经济量,而在于说明各个经济量的关系及其共同作用。一个模型就是一个系统。复杂的国民经济往往不是少数几个模型所能反映的,所以需要建立比较完整的模型体系。
四、经济数学模型的应用范围
数学模型在经济中的应用范围是很广的,从应用的目的归纳大致包括四个方面:
(1)观察和预测经济事物的机理变化和发展趋势;
(2)规划和设计经济的现实与未来;
(3)分析和控制经济的运动和概率;
(4)研究和解释经济现象及概率。
5、经济数学模型的分类
反映经济数量关系复杂变化的经济数学模型,可按不同的标准分类。
1. 按经济数量关系,一般分为数理经济模型、计量经济模型、投入产出模型、数学规划经济模型四种。
数理经济模型主要指用数学语言描述经济问题的模型,其目的在于通过数学工具进行演绎推理从而得到某种经济意义的结果。在数理经济模型中,变量间关系的建立主要是按一定理论或规则的定义来进行,即形成的是定义式。而不是按统计经验或数据间的某种相关性来建立。如果模型的前提条件和依据的有关理论是成立的,那么经过严格数学推导出的结果也必然成立。
计量经济模型就是依据计量经济学的有关理论与方法,在一定经济理论的指导下建立的经济模型。计量经济学是以数学、统计和经济这三种理论为基础发展起来的。因此计量经济模型的一个重要特征是以统计数据为基础,即离开统计数据就无法建立计量经济模型。
投入产出模型的理论基础是投入产出分析理论。投入产出分析以经济生产中的投入要素和产出结果为特定研究对象。投入产出分析基本是以核算恒等式为基础,以系统的部分与总体间存在线性关系为假设,主要以线性代数为研究工具。投入产出模型反映部门、地区或产品之间的*衡关系,用来研究生产技术联系,以协调经济活动。
数学规划经济模型是以数学规划理论与方法建立的经济模型。数学规划是运筹学的一个重要分支,它的研究对象是数值最优化问题。数学规划模型反映经济活动中的条件极值问题,是一种特殊的均衡模型,用来选取最优方案。
2. 按经济范围的大小,模型可分为企业的、部门的、地区的、国家的和世界的五种。企业模型一般称为微观模型,它反映企业的经济活动情况,对改善企业的经营管理有重大意义。部门模型与地区模型是连结企业模型和国家模型的中间环节。国家模型一般称为宏观模型,综合反映一国经济活动中总量指标之间的相互关系。世界模型反映国际经济关系的相互影响和作用。
3. 按数学形式的不同,模型一般分为线性和非线性两种。线性模型是指模型中包含的方程都是一次方程。非线性模型是指模型中有两次以上的高次方程。有时非线性模型可化为线性模型来求解,如把指数模型转换为对数模型来处理。
4. 按时间状态分,模型有静态与动态两种:静态模型反映某一时点的经济数量关系;动态模型反映一个时期的经济发展过程,含有时间延滞因素。
5. 按应用的目的,有理论模型与应用模型之分,是否利用具体的统计资料,是这两种模型的差别所在。
6. 按模型的用途,还可分为结构分析模型、预测模型、政策模型、计划模型。
此外,还有随机模型(含有随机误差的项目)与确定性模型(不考虑随机因素)等等分类。这些分类互有联系,有时还可结合起来进行考察,如动态非线性模型、随机动态模型等等。
六、构建和运用经济数学模型时应注意的问题
数学模型对现实的把握是相对的、有条件的。其运用前提是:
有关的经济范畴和经济理论是否正确;
假定是否合理;
结论能否进行政伪和检验;
对现实是否具有说服力等等。
因此,在构建和运用经济数学模型时要注意到:
(1)构建数学模型要对所研究的经济问题作细致周密的调查研究,分析其运行规律,获取其影响因素的数据,明了其中的数量关系,然后才是选取数学方法,建立起数学表达式,最后还需求解、验证。
(2)在经济实际中只能对可量化的事物进行数学分析和构建数学模型,对不可量化的事物只能建造模型概念,而模型概念是无法进行数量分析的。尽管经济模型是反映事物的数量关系的,但必须从定性认识开始,离开具体理论所界定的概念,就无从对事物的数量进行研究。经济上的量是在一定的界定下的量,不是数学中抽象的量。
(3)构建数学模型时要考虑到约束条件。数学方法逻辑严密性和计算准确性的性质决定了任何一个数学模型都要受到若干条件的约束,只有假定这项条件满足,该数学模型才能成立。而几乎所有的经济理论都是在一定的条件和假定的情况下才能成立,这就决定了每个经济模型都有受到若干个条件的约束。
(4)根据所搜集的数据建造的数学模型,只能算作一个“经验公式”,其只能对现象做出粗略大致的描述,据此公式计算出来的数值只能是个估计值。
(5)用所建造的数学模型去说明解释处于动态中的经济现象,必须注意时空条件的变化,必须考虑不可量化因素的影响作用以及在一定条件下次要因素转变为主要因素的可能性。
[参考文献]
[1] 杨键等。 经济数学模型化过程分析。 *人民大学出版社。2000
数学模型方面的论文3
[摘要]
本文选取了2010年3月至2012年5月文山三七交易市场各三七品种的交易价格数据,建立了任意两种品种价格之间的一元回归模型,并运用计量经济分析方法以及计量经济学软件Eviews定量地检验了模型的合理性。
[关键词]
三七价格 *稳性检验 关联性 线性回归分析 因果检验 残差分析
一、引言
三七是名贵的中药材。随着国民经济的发展和人民生活水*的提高,三七的需求量越来越大,价格也经常出现大幅度波动。历史上,三七价格出现过多次的大幅度涨跌,直接原因是人们在三七价高时盲目扩大种植,而在跌价时不惜血本抛售。从根本上看,三七价格大幅度涨跌的原因,很大程度上是信息不透明和交易手段落后造成的,因此,推进电子化交易是三七流通的必然趋势。但是,另一方面,三七规格品种分类太多,价格体系复杂给三七电子化交易带来了一定的困难。电子化交易要求交易品种标准化,通过大量交易客户进行集中交易达到发现价格的目的,而太多的规格品种则会造成交易的分散。因此,以两种规格品种为代表,通过一定的关联关系确定其它品种的价格,对于促进三七电子化交易的发展有积极意义。本文采用计量经济分析法研究三七各规格品种价格之间的内在联系,试图构建一种价格关联标准为买卖双方提供价格指导。
虽然目前尚未有学者对三七不同规格品种间的价格相关性做过具体的分析,但国内已有了不少研究价格相关性的成果。如:刘秉乾 在《我国金属期货与现货的相关性研究》中,采用*稳性检验,格兰杰因果检验等方法对我国铜和铝的期货与现货进行了研究;孔红丽、刘磊 根据有关方面的数据建立一元线性回归模型,运用最小二乘法定量分析贵州与东盟进出口贸易额与贵州省经济增长之间关系。
基于对以上文献的参考,我们采用了*稳性检验,格兰杰因果检验的方法,运用最小二乘法建立了一元回归模型,并对这些回归方程做了残差分析,定量地分析了各品种三七价格之间的联系。
二、实证分析
1.数据处理及各三七品种的价格走向
本文所采用的数据是2010年3月至2012年5月文山三七交易市场各三七品种的交易价格,对缺失数据的处理是:如果数据有缺失,我们直接删除整行的观测值。我们共有243个样本。然后主要利用数理统计的方法研究和利用经济学软件Eviews 分析各三七品种价格间的关联。
为了降低数据的异方差性但不改变数据的趋势性,需要对数据进行对数处理。故接下来我们研究的数据皆是变量的对数形式。
2.数据的*稳性检验
检验变量序列是否*稳,即是否具有单位根。我们一般常用ADF检验方法。本文采用含有截距和时间趋势的ADF单位根检验变量的*稳性(表1),如果其中任何一个检验变量中ADF值都小于临界值,则可以认为该序列没有单位根,是*稳的序列。运用Eviews6.0对各变量的单位根进行检验,结果可从表1反映出来。
从表1可以看出,在1%的置信度下,各个序列均为*稳序列。
3.格兰杰因果检验
在前面的*稳性检验中,我们知道各种三七品种价格的序列为*稳的。下面我们对它们进行格兰杰因果关系检验。鉴于篇幅有限,我们只对部分变量的对数进行检验。
从上表可以看出在1%的置信度下,概率P值0.0012小于0.01,所以拒绝原假设“40头三七的价格不是20头三七价格的因”,即40头三七的价格是20三七价格的因。同理从上表又可以看出20头三七的价格也是40头价格的因,两者互为因果关系。
因此,我们可以对其他的变量进行因果检验,得到类似的结论。
4.各品种的三七的价格的回归方程及分析
鉴于篇幅有限,我们只给出了其它三七规格品种价格与40头三七价格的函数模型(函数均化成了指数形式),所有的函数取值范围都为(x>0,y>0)。
注:其中为40头三七的价格,为其他各品种的三七价格。
结果分析:
对于拟合优度r2,其一般取值在0与1之间。其越接近于1,就说明回归方程对样本数据点的拟合优度越高。而在上述所得的回归方程中,拟合优度r2值大多数都大于0.9,说明上述大部分回归方程的拟合优度都很高。
在上述回归方程中F统计量下的P值均为0,故在1%的置信度下,上述模型均可以反应各种三七品种价格之间的关联性。由于eviews软件只能精确到四位小数,此时为了更好地反映回归方程的显着性最好参照F统计量的值。在Prob(F-statistic)均为0.0000的前提下,F统计量的值越大越能说明回归系数与零有显着差异。此外在一元回归分析中,回归方程显着性检验和回归系数显着性检验的作用是相同的,两者可以互相替代。因此,回归方程具有显着性,即函数模型恰当。
5.残差分析
在此,我们仅对以40头的三七价格为自变量,毛根的三七价格为因变量的回归方程: 的残差做以下三个方面的分析。 (1) 分析残差序列是否服从均值为0的正态分布 我们用eviews6.0得到了该方程的残差序列的基本统计特征:*均值为-4.80E-16,JB统计量为21.54477,以及此时其对应的概率为0.000021。
(1)r> 原假设为时间序列服从正态分布。
在原假设下JB 统计量服从自由度为2的卡方分布。以检验水*1%为例,对应的临界值为9.21,即P(X>9.21)=0.01。若计算的JB>9.21,则拒绝原假设,分布不是正态分布。否则接受原假设。在Excle中输入chiinv(0.00002,2)得出自由度为2,概率为0.00002的临界值为21.64,由图2中的JB 统计量和其对应的概率值知,该残差序列的分布与正态分布无显着性差异。所以残差总体上服从以0为均值的正态分布。
(2) 残差的独立性分析
残差的独立分析可以通过绘制残差序列图实现。我们用eviews6.0对其残差进行绘图,发现残差随着时间推移无规律性的变化,因此该残差序列不存在自相关性。
(3)异方差性分析
回归分析中,要求残差的方差是一个常数,或者说,不受自变量取值水*的影响。如果残差的方差随着x的变化而变化,我们就称这一现象为“异方差性”。
首先生成残差*方序列e5,然后绘制其散点图。发现残差*方项e5的散点图主要分布图形中的下半部分,少数几个值起伏很大。所以残差的方差不为一个常数,模型很可能存在异方差。由此说明我们的原始数据中存在着奇异点。
三、结束语
本次研究利用统计计量方面的理论尝试研究出三七各品种价格之间的关系,最后我们得出了一系列三七品种之间的数学模型。这些模型为纯理论性的模型,三七交易者们在实际交易中可以适当参考。
我们旨在建立一种标准,来为三七行业服务,促进三七行业的健康发展。在此对给予本次研究大力支持的云南省文山州三七特产局等一系列单位表示衷心感谢。(本文数据来源于文山三七电子商务股份有限公司)
[参考文献]
[1] 张晓峒.计量经济学软件EVIEWS使用指南[M].南开大学出版社,2003.
[2] 高铁梅.计量经济分析方法与建模:Eviews应用及实例[M].清华大学出版社,2006.
[3] 刘秉乾.我国金属期货与现货的相关性研究[D].云南大学数理统计学院,2010.
[4] 孔红丽,刘磊.贵州与东盟的进出口贸易额与贵州经济增长的相关性分析[D].贵州大学经济学院,2011.
推荐访问:数学模型
论文
菁选
数学模型方面论文
菁选3篇
数学模型方面的论文1
数学模型方面的论文100字
数学模型方面的论文1000字
数学模型方面的论文150字
数学模型方面的论文1 【摘要】 金融数学是以概率统计和泛函分析为基础,以随机分析和鞅理论为核心,主要研究风险资产的定价、避险和最优投资消费策略的选择。近二十几年来,金融数学不仅对金融工具的创新和下面是小编为大家整理的数学模型方面论文,菁选3篇【精选推荐】,供大家参考。
数学模型方面的论文1
【摘要】
金融数学是以概率统计和泛函分析为基础,以随机分析和鞅理论为核心,主要研究风险资产的定价、避险和最优投资消费策略的选择。近二十几年来,金融数学不仅对金融工具的创新和对金融市场的有效运作产生直接的影响,而且对公司的投资策略和对研究开发项目的评估以及在金融风险的管理中得到广泛的运用。
【关键词】
金融数学 模型
一、金融数学概念
金融理论的核心问题,就是研究在不确定的环境下,经济人在空间和时间上分配或配置金融资产的活动。这种金融行为涉及到金融资产的时间因素、不确定性因素即金融资产的价值和风险问题。处理这种复杂性常常需要引入复杂的数学工具。金融数学是指运用数学理论和方法,研究金融运行规律的一门学科。其核心问题是在不确定多期条件下的证券组合选择和资产定价理论。套利、最优和均衡是其中三个主要概念。证券组合理论、资本资产定价模型、套利定价理论、期权定价理论和资产结构理论在现代金融数学理论中占据重要地位。
二、金融数学中的模型
1、有效市场理论
市场的有效性这一概念起源于本世纪法国人Bachelier的研究。他首次运用布朗运动模型来导出期权公式是在1900年,市场有效性的起源也正是在那个时候。然而市场有效性与信息相联系,是近几十年来的工作。Fama指出价格完全反映了可以使用的信息时,这个市场才能被称为是有效的,但是市场是有套还是无套利,是高效还是低效,不是非此即彼的问题,而是程度问题。
有效市场假设一直是激烈争论的问题,学者们进行了无数次理论研究和实证考察,对有效的市场理论的逻辑基础提出疑义:一方面市场的有效性是投机和套利的产物,而投机和套利都是有成本的活动;另一方面,因为市场是有效的,所以投机和套利是得不到回报的,这些活动就会停止,但是一旦停止了投机和套利的活动,市场又怎么能继续有效呢?无疑,投机和套利活动使得价格更为有效。正是这一矛盾统一体的不断变化,才使市场呈现出统计上的周期性变化。
2、证券组合理论
金融学从定性分析到定量分析始于马科维茨的证券组合选择理论。马科维茨首先将概率理论与数学规划成功地结合在了一起,把组合投资中的股票价格作为随机变量,用其均值表示受益,方差表示风险。当收益不变、使风险最小的投资组合问题可归结为二次规划的最优解。通过数量分析得出的这种结论,迎合了投资者规避风险的需要。随着量化研究的不断深入,组合理论及其实际运用方法越来越完善,成为现代投资学中的交流工具。但马科维茨组合理论中的许多假设条件无法满足,使其在现实中失效。为了克服这一困难,后来发展了基于神经网络的证券优化算法。
3、资本资产定价模型(CAPM)
资本资产定价模型主要描述了当市场处于均衡状态下,如何决定资产的相关风险以及收益和风险的相互关系。在均衡的市场中,理性的投资者都会持有市场证券组合的比例。市场证券组合是包含对所有证券投资的证券组合,其中每一种证券的投资比例等于它的相对市场价值,一种证券的相对市场价值等于这种证券总的市场价值除以所有证券总和的市场价值。该模型首先给出了风险资产收益率与市场风险之间的线性关系。同时也给出了单个证券的收益与市场资产组合收益之间的数量关系。资本资产定价模型的理论精华是一种证券的预期收益,可以用这种资产风险测度β来测量,既建立了期望收益率与β之间的线性关系。这一关系给出了很好的的两个命题。第一,为潜在的投资提供了一种估计其收益率的方法。第二,也为我们不在市场上交易的资产同样作出合理的定价。比如估计一级市场股票发行价。
4、APT模型
资本资产定价模型刻画了在资本市场达到均衡时资本收益的决定机制,他基于众多的假设,而且其中一些假设并不符合现实,在检验CAPM时,一些经验结果与其不符,为此在1970年罗斯提出了一种新的资本资产均衡模型即套利定价模型。该模型认为风险是由多个因素产生的,不仅仅是一个市场因素,尤其是他对风险态度的假设比CAPM更为宽松,也更为接近现实。APT的核心是假设不存在套利机会,证券的预期收益与风险因素存在近似的线性关系。APT理论的贡献主要在于其对均衡状态的描述。但由于APT理论只是阐明了资产定价的结构,而没有说明是哪些具体的经济的或其它的因素影响预期收益,所以这一理论的检验和实际应用都受到了一定的限制。
5、期权定价模型
布莱克和斯科尔斯的期权定价模型的推导建立在没有交易成本、税收限制等6个假设基础上。该模型表明:期权的价格是期权商品市场价格、商品市场价格的波动、期权执行价格距到期日时间的长短以及安全利息率的函数。自从布莱克和斯科尔斯的论文发表以后,由默顿、考克斯、鲁宾斯坦等一些学者相继对这一理论进行了重要的推广并得到广泛的应用。期权定价模型可用来制定各种金融衍生产品的价格,是各种衍生产品估价的有效工具。期权定价模型为西方国家金融创新提供了有利的指导,是现代金融理论的主要内容之一。
6、资产结构理论
在现代金融理论中,公司的资产结构理论(也称为MM定理)与有效市场理论和资产组合理论几乎是在同一时期发展起来的具有同等重要地位的成果。MM定理的条件是非常苛刻的,正是因为这些假设抽象掉了大量的现实东西,从而揭示了企业金融决策中最本质的东西即企业经营者和投资者行为及其相互作用。该定理公开发表以后,一些经济学家又对这一定理采用不同的方法从不同的角度作了进一步证明。其中最著名的有Hamda用资本定价模型进行了再证明,还有Stiglize用一般均衡理论作了再证明,结论都与MM定理是相一致的。
三、结语
数学模型已经大量的应用在金融学中,极大的促进了金融理论的发展。金融数学模型都是在很多假设的条件下才能成立,这些假设有些与客观现实有一定差距甚至抵触,因而解决这类问题就不理想,范围也十分狭窄,需要在数学上改进和发展。世界各国金融背景和管理模式各异,需要大量建立符合自己国情的金融模型和分析方法。
参考文献:
[1]张友兰,周爱名。金融数学的研究与进展[J]。高等数学研究, 2004。
[2]夏云森。金融数学模型[J]。*管理科学,1998,(3)
数学模型方面的论文2
[摘要]
经济数学模型是现代经济学语言的表现形式,是研究经济学的重要工具。该文从数学模型的基本概念,经济数学模型的内涵、分类,建立和应用经济数学模型等方面进行简要论述。
[关键词]
经济学 数学 数学模型经济数学模型
目前,数学方法的应用几乎遍及了经济学的各个领域,极大地促进了经济学的繁荣和发展。数学模型分析已成为现代经济学研究的基本趋向。经济数学模型在研究许多特定的经济问题方面具有重要的、有时甚至是不可替代的作用。经济数学模型方法在经济学日益计量化、定量分析化的今天显得越来越重要。
一、数学模型的基本概念
数学模型是相对于一定的概念、系统或过程而存在的。它是用数学语言表达原型结构、特征即内在联系的模型。例如,用字母、数字或其他有特别含义的数学符号建立起来的等式、不等式、图表、图像以及框图等,都是数学结构,当它们表征一个特定原型时,就是数学模型。总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形、图表等来刻画客观事物的本质属性与其内在联系。其特点是:明晰的假定条件、严谨的论证、清楚的结论。运用数学模型可以研究变量之间的关系,探寻事物的变化规律,用可控变量得出必要的结论,从而概括出理论假说。
1. 对构建数学模型的要求
(1)有足够的精确度;
(2)简单实用;
(3)依据充分;
(4)尽量借鉴标准形式;
(5)具有可控性,易于操作。
2 .数学建模的过程
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用获取的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行分析。
(6)模型检验:将模型分析结果与实际情况进行比较,以此来验证模型的准确性、合理性和适用性
二、经济数学模型的内涵
当数学模型与经济研究问题有机地结合在一起时,经济建模也就产生了。所谓经济数学模型,就是把实际经济现象内部各因素之间的关系以及人们的实践经验,归结成一套反映数量关系的数学公式和一系列的具体算法,用来描述研究对象的运动规律。在经济领域的数*用首要的问题是适用性或实践性问题,即能否用所建立的模型去概括某一经济现象或说明某一经济问题。运用经济数学建模来分析经济问题,预测经济走向,提出经济对策已经是大势所趋。
经济数学模型是研究分析经济数量关系的重要工具。它是经济理论和经济现实的中间环节。它在经济理论的指导下对经济现实进行简化,但在主要的本质方面又近似地反映了经济现实,所以是经济现实的抽象。
经济数学模型能起明确思路、加工信息、验证理论、计算求解、分析和解决经济问题的作用。对量大面广、相互联系、错综复杂的经济数量关系进行分析研究,不能离开经济数学模型的帮助。
三、经济数学模型的建立
1.理论和资料的准备。经济数学模型的质量首先取决于对经济问题的理论研究状况。理论假设能否成立、是否正确,关系到模型的成败。合理的理论假设是模型赖以建立的前提。资料是否充分、可靠和准确,也直接影响经济数学模型的质量与功能。
2. 建立模型。模型要采取一定的数学形式来反映经济数量关系。任何经济模型都需要有两个基本的构成要素:变量及关系。变量,即经济变量,指所要考虑的相关经济因素。在经济模型中一般存在两类变量,外生变量与内生变量。关系,即指经济变量间的关系。模型就是通过一定的方式将一些变量联接成一个有机系统,从而可以通过这个系统实现不同变量间的彼此相互作用。选定一些经济变量,并建立变量间的关系,这个过程就是建立经济模型的过程。模型不能过于简化,以致不能把握经济现实,又不能过分复杂,以致难于加工处理和管理操作。一个模型抽象或现实到什么程度,取决于分析的需要、分析人员的能力,以及取得资料的可能性。
3. 求解或模拟试验。以适用的软件(计算程序)在具有一定功能的电子计算机上可以进行各种模拟试验,比较和选择不同的方案。
4. 分析说明和实际应用。在分析和应用模型时,把模型计算所得出的结论与模型外获得的信息相结合,作出必要的判断。评价模型优劣的标准应该是吻合度(它同被反映的经济数量关系的符合程度)与实用度(进行理论分析、经济预测、政策评价等应用效果)的统一。随着客观经济情况的变化,模型需要不断修改和更新。
经济数学模型是系统方法的具体运用,它的着眼点并不在于反映单个的经济量,而在于说明各个经济量的关系及其共同作用。一个模型就是一个系统。复杂的国民经济往往不是少数几个模型所能反映的,所以需要建立比较完整的模型体系。
四、经济数学模型的应用范围
数学模型在经济中的应用范围是很广的,从应用的目的归纳大致包括四个方面:
(1)观察和预测经济事物的机理变化和发展趋势;
(2)规划和设计经济的现实与未来;
(3)分析和控制经济的运动和概率;
(4)研究和解释经济现象及概率。
5、经济数学模型的分类
反映经济数量关系复杂变化的经济数学模型,可按不同的标准分类。
1. 按经济数量关系,一般分为数理经济模型、计量经济模型、投入产出模型、数学规划经济模型四种。
数理经济模型主要指用数学语言描述经济问题的模型,其目的在于通过数学工具进行演绎推理从而得到某种经济意义的结果。在数理经济模型中,变量间关系的建立主要是按一定理论或规则的定义来进行,即形成的是定义式。而不是按统计经验或数据间的某种相关性来建立。如果模型的前提条件和依据的有关理论是成立的,那么经过严格数学推导出的结果也必然成立。
计量经济模型就是依据计量经济学的有关理论与方法,在一定经济理论的指导下建立的经济模型。计量经济学是以数学、统计和经济这三种理论为基础发展起来的。因此计量经济模型的一个重要特征是以统计数据为基础,即离开统计数据就无法建立计量经济模型。
投入产出模型的理论基础是投入产出分析理论。投入产出分析以经济生产中的投入要素和产出结果为特定研究对象。投入产出分析基本是以核算恒等式为基础,以系统的部分与总体间存在线性关系为假设,主要以线性代数为研究工具。投入产出模型反映部门、地区或产品之间的*衡关系,用来研究生产技术联系,以协调经济活动。
数学规划经济模型是以数学规划理论与方法建立的经济模型。数学规划是运筹学的一个重要分支,它的研究对象是数值最优化问题。数学规划模型反映经济活动中的条件极值问题,是一种特殊的均衡模型,用来选取最优方案。
2. 按经济范围的大小,模型可分为企业的、部门的、地区的、国家的和世界的五种。企业模型一般称为微观模型,它反映企业的经济活动情况,对改善企业的经营管理有重大意义。部门模型与地区模型是连结企业模型和国家模型的中间环节。国家模型一般称为宏观模型,综合反映一国经济活动中总量指标之间的相互关系。世界模型反映国际经济关系的相互影响和作用。
3. 按数学形式的不同,模型一般分为线性和非线性两种。线性模型是指模型中包含的方程都是一次方程。非线性模型是指模型中有两次以上的高次方程。有时非线性模型可化为线性模型来求解,如把指数模型转换为对数模型来处理。
4. 按时间状态分,模型有静态与动态两种:静态模型反映某一时点的经济数量关系;动态模型反映一个时期的经济发展过程,含有时间延滞因素。
5. 按应用的目的,有理论模型与应用模型之分,是否利用具体的统计资料,是这两种模型的差别所在。
6. 按模型的用途,还可分为结构分析模型、预测模型、政策模型、计划模型。
此外,还有随机模型(含有随机误差的项目)与确定性模型(不考虑随机因素)等等分类。这些分类互有联系,有时还可结合起来进行考察,如动态非线性模型、随机动态模型等等。
六、构建和运用经济数学模型时应注意的问题
数学模型对现实的把握是相对的、有条件的。其运用前提是:
有关的经济范畴和经济理论是否正确;
假定是否合理;
结论能否进行政伪和检验;
对现实是否具有说服力等等。
因此,在构建和运用经济数学模型时要注意到:
(1)构建数学模型要对所研究的经济问题作细致周密的调查研究,分析其运行规律,获取其影响因素的数据,明了其中的数量关系,然后才是选取数学方法,建立起数学表达式,最后还需求解、验证。
(2)在经济实际中只能对可量化的事物进行数学分析和构建数学模型,对不可量化的事物只能建造模型概念,而模型概念是无法进行数量分析的。尽管经济模型是反映事物的数量关系的,但必须从定性认识开始,离开具体理论所界定的概念,就无从对事物的数量进行研究。经济上的量是在一定的界定下的量,不是数学中抽象的量。
(3)构建数学模型时要考虑到约束条件。数学方法逻辑严密性和计算准确性的性质决定了任何一个数学模型都要受到若干条件的约束,只有假定这项条件满足,该数学模型才能成立。而几乎所有的经济理论都是在一定的条件和假定的情况下才能成立,这就决定了每个经济模型都有受到若干个条件的约束。
(4)根据所搜集的数据建造的数学模型,只能算作一个“经验公式”,其只能对现象做出粗略大致的描述,据此公式计算出来的数值只能是个估计值。
(5)用所建造的数学模型去说明解释处于动态中的经济现象,必须注意时空条件的变化,必须考虑不可量化因素的影响作用以及在一定条件下次要因素转变为主要因素的可能性。
[参考文献]
[1] 杨键等。 经济数学模型化过程分析。 *人民大学出版社。2000
数学模型方面的论文3
[摘要]
本文选取了2010年3月至2012年5月文山三七交易市场各三七品种的交易价格数据,建立了任意两种品种价格之间的一元回归模型,并运用计量经济分析方法以及计量经济学软件Eviews定量地检验了模型的合理性。
[关键词]
三七价格 *稳性检验 关联性 线性回归分析 因果检验 残差分析
一、引言
三七是名贵的中药材。随着国民经济的发展和人民生活水*的提高,三七的需求量越来越大,价格也经常出现大幅度波动。历史上,三七价格出现过多次的大幅度涨跌,直接原因是人们在三七价高时盲目扩大种植,而在跌价时不惜血本抛售。从根本上看,三七价格大幅度涨跌的原因,很大程度上是信息不透明和交易手段落后造成的,因此,推进电子化交易是三七流通的必然趋势。但是,另一方面,三七规格品种分类太多,价格体系复杂给三七电子化交易带来了一定的困难。电子化交易要求交易品种标准化,通过大量交易客户进行集中交易达到发现价格的目的,而太多的规格品种则会造成交易的分散。因此,以两种规格品种为代表,通过一定的关联关系确定其它品种的价格,对于促进三七电子化交易的发展有积极意义。本文采用计量经济分析法研究三七各规格品种价格之间的内在联系,试图构建一种价格关联标准为买卖双方提供价格指导。
虽然目前尚未有学者对三七不同规格品种间的价格相关性做过具体的分析,但国内已有了不少研究价格相关性的成果。如:刘秉乾 在《我国金属期货与现货的相关性研究》中,采用*稳性检验,格兰杰因果检验等方法对我国铜和铝的期货与现货进行了研究;孔红丽、刘磊 根据有关方面的数据建立一元线性回归模型,运用最小二乘法定量分析贵州与东盟进出口贸易额与贵州省经济增长之间关系。
基于对以上文献的参考,我们采用了*稳性检验,格兰杰因果检验的方法,运用最小二乘法建立了一元回归模型,并对这些回归方程做了残差分析,定量地分析了各品种三七价格之间的联系。
二、实证分析
1.数据处理及各三七品种的价格走向
本文所采用的数据是2010年3月至2012年5月文山三七交易市场各三七品种的交易价格,对缺失数据的处理是:如果数据有缺失,我们直接删除整行的观测值。我们共有243个样本。然后主要利用数理统计的方法研究和利用经济学软件Eviews 分析各三七品种价格间的关联。
为了降低数据的异方差性但不改变数据的趋势性,需要对数据进行对数处理。故接下来我们研究的数据皆是变量的对数形式。
2.数据的*稳性检验
检验变量序列是否*稳,即是否具有单位根。我们一般常用ADF检验方法。本文采用含有截距和时间趋势的ADF单位根检验变量的*稳性(表1),如果其中任何一个检验变量中ADF值都小于临界值,则可以认为该序列没有单位根,是*稳的序列。运用Eviews6.0对各变量的单位根进行检验,结果可从表1反映出来。
从表1可以看出,在1%的置信度下,各个序列均为*稳序列。
3.格兰杰因果检验
在前面的*稳性检验中,我们知道各种三七品种价格的序列为*稳的。下面我们对它们进行格兰杰因果关系检验。鉴于篇幅有限,我们只对部分变量的对数进行检验。
从上表可以看出在1%的置信度下,概率P值0.0012小于0.01,所以拒绝原假设“40头三七的价格不是20头三七价格的因”,即40头三七的价格是20三七价格的因。同理从上表又可以看出20头三七的价格也是40头价格的因,两者互为因果关系。
因此,我们可以对其他的变量进行因果检验,得到类似的结论。
4.各品种的三七的价格的回归方程及分析
鉴于篇幅有限,我们只给出了其它三七规格品种价格与40头三七价格的函数模型(函数均化成了指数形式),所有的函数取值范围都为(x>0,y>0)。
注:其中为40头三七的价格,为其他各品种的三七价格。
结果分析:
对于拟合优度r2,其一般取值在0与1之间。其越接近于1,就说明回归方程对样本数据点的拟合优度越高。而在上述所得的回归方程中,拟合优度r2值大多数都大于0.9,说明上述大部分回归方程的拟合优度都很高。
在上述回归方程中F统计量下的P值均为0,故在1%的置信度下,上述模型均可以反应各种三七品种价格之间的关联性。由于eviews软件只能精确到四位小数,此时为了更好地反映回归方程的显着性最好参照F统计量的值。在Prob(F-statistic)均为0.0000的前提下,F统计量的值越大越能说明回归系数与零有显着差异。此外在一元回归分析中,回归方程显着性检验和回归系数显着性检验的作用是相同的,两者可以互相替代。因此,回归方程具有显着性,即函数模型恰当。
5.残差分析
在此,我们仅对以40头的三七价格为自变量,毛根的三七价格为因变量的回归方程: 的残差做以下三个方面的分析。 (1) 分析残差序列是否服从均值为0的正态分布 我们用eviews6.0得到了该方程的残差序列的基本统计特征:*均值为-4.80E-16,JB统计量为21.54477,以及此时其对应的概率为0.000021。
(1)r> 原假设为时间序列服从正态分布。
在原假设下JB 统计量服从自由度为2的卡方分布。以检验水*1%为例,对应的临界值为9.21,即P(X>9.21)=0.01。若计算的JB>9.21,则拒绝原假设,分布不是正态分布。否则接受原假设。在Excle中输入chiinv(0.00002,2)得出自由度为2,概率为0.00002的临界值为21.64,由图2中的JB 统计量和其对应的概率值知,该残差序列的分布与正态分布无显着性差异。所以残差总体上服从以0为均值的正态分布。
(2) 残差的独立性分析
残差的独立分析可以通过绘制残差序列图实现。我们用eviews6.0对其残差进行绘图,发现残差随着时间推移无规律性的变化,因此该残差序列不存在自相关性。
(3)异方差性分析
回归分析中,要求残差的方差是一个常数,或者说,不受自变量取值水*的影响。如果残差的方差随着x的变化而变化,我们就称这一现象为“异方差性”。
首先生成残差*方序列e5,然后绘制其散点图。发现残差*方项e5的散点图主要分布图形中的下半部分,少数几个值起伏很大。所以残差的方差不为一个常数,模型很可能存在异方差。由此说明我们的原始数据中存在着奇异点。
三、结束语
本次研究利用统计计量方面的理论尝试研究出三七各品种价格之间的关系,最后我们得出了一系列三七品种之间的数学模型。这些模型为纯理论性的模型,三七交易者们在实际交易中可以适当参考。
我们旨在建立一种标准,来为三七行业服务,促进三七行业的健康发展。在此对给予本次研究大力支持的云南省文山州三七特产局等一系列单位表示衷心感谢。(本文数据来源于文山三七电子商务股份有限公司)
[参考文献]
[1] 张晓峒.计量经济学软件EVIEWS使用指南[M].南开大学出版社,2003.
[2] 高铁梅.计量经济分析方法与建模:Eviews应用及实例[M].清华大学出版社,2006.
[3] 刘秉乾.我国金属期货与现货的相关性研究[D].云南大学数理统计学院,2010.
[4] 孔红丽,刘磊.贵州与东盟的进出口贸易额与贵州经济增长的相关性分析[D].贵州大学经济学院,2011.
推荐访问:数学模型
论文
菁选
数学模型方面论文
菁选3篇
数学模型方面的论文1
数学模型方面的论文100字
数学模型方面的论文1000字
数学模型方面的论文150字
上一篇:数学模型在储能锂离子电池中的应用
下一篇:数学班主任工作总结(完整)